Java设计模式笔记(2)单例设计模式

1. 单例设计模式介绍

所谓类的单例设计模式,就是采取一定的方法保证在整个的软件系统中,对某个类只能存在一个对象实例,并且该类只提供一个取得其对象实例的方法(静态方法)。

2. 单例设计模式八种方式

单例模式有八种方式:

  1. 饿汉式(静态常量)
  2. 饿汉式(静态代码块)
  3. 懒汉式(线程不安全)
  4. 懒汉式(线程安全,同步方法)
  5. 懒汉式(线程安全,同步代码块)
  6. 双重检查
  7. 静态内部类
  8. 枚举

3. 饿汉式(静态常量)

饿汉式(静态常量)应用实例步骤如下:

  1. 构造器私有化 (防止 new )
  2. 类的内部创建对象
  3. 向外暴露一个静态的公共方法。getInstance
  4. 代码实现
public class SingletonTest01 {
    public static void main(String[] args) {
        //测试
        Singleton instance = Singleton.getInstance();
        Singleton instance2 = Singleton.getInstance();
        System.out.println(instance == instance2); // true
        System.out.println("instance.hashCode=" + instance.hashCode());
        System.out.println("instance2.hashCode=" + instance2.hashCode());
    }
}

//饿汉式(静态变量)
class Singleton {
    //1. 构造器私有化, 外部能 new
    private Singleton() {
    }

    //2.本类内部创建对象实例
    private final static Singleton instance = new Singleton();
  
    //3. 提供一个公有的静态方法,返回实例对象
    public static Singleton getInstance() {
        return instance;
    }
}

优缺点说明:

  1. 优点:这种写法比较简单,就是在类装载的时候就完成实例化。避免了线程同步问题。
  2. 缺点:在类装载的时候就完成实例化,没有达到 Lazy Loading 的效果。如果从始至终从未使用过这个实例,则会造成内存的浪费
  3. 这种方式基于 classloder 机制避免了多线程的同步问题,不过,instance 在类装载时就实例化,在单例模式中大多数都是调用 getInstance 方法, 但是导致类装载的原因有很多种,因此不能确定有其他的方式(或者其他的静态方法)导致类装载,这时候初始化 instance 就没有达到 lazy loading 的效果
  4. 结论:这种单例模式可用,可能造成内存浪费

4. 饿汉式(静态代码块)

代码演示:

public class SingletonTest02 {
    public static void main(String[] args) {
        //测试
        Singleton instance = Singleton.getInstance();
        Singleton instance2 = Singleton.getInstance();
        System.out.println(instance == instance2); // true
        System.out.println("instance.hashCode=" + instance.hashCode());
        System.out.println("instance2.hashCode=" + instance2.hashCode());
    }
}

//饿汉式(静态变量)
class Singleton {
    private static Singleton instance;
    //1. 构造器私有化, 外部能 new
    private Singleton() {

    }
    //2.本类内部创建对象实例
    static { // 在静态代码块中,创建单例对象
        instance = new Singleton();
    }
    //3. 提供一个公有的静态方法,返回实例对象
    public static Singleton getInstance() {
        return instance;
    }
}

优缺点说明:

  1. 这种方式和上面的方式其实类似,只不过将类实例化的过程放在了静态代码块中,也是在类装载的时候,就执行静态代码块中的代码,初始化类的实例。优缺点和上面是一样的。
  2. 结论:这种单例模式可用,但是可能造成内存浪费

5. 懒汉式(线程不安全)

代码演示:

public class SingletonTest03 {
    public static void main(String[] args) {
        System.out.println("懒汉式 1 , 线程不安全~");
        Singleton instance = Singleton.getInstance();
        Singleton instance2 = Singleton.getInstance();
        System.out.println(instance == instance2); // true
        System.out.println("instance.hashCode=" + instance.hashCode());
        System.out.println("instance2.hashCode=" + instance2.hashCode());
    }
}

class Singleton {
    private static Singleton instance;

    private Singleton() {
    }

    //提供一个静态的公有方法,当使用到该方法时,才去创建 instance
    //即懒汉式
    public static Singleton getInstance() {
        if (instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}

优缺点说明:

  1. 起到了懒加载的效果,但是只能在单线程下使用。
  2. 如果在多线程下,一个线程进入了if (singleton == null)判断语句块,还未来得及往下执行,这时另一个线程也通过了这个判断语句,这时便会产生多个实例。所以在多线程环境下不可使用这种方式。
  3. 结论:在实际开发中,不推荐使用这种方式.

6. 懒汉式(线程安全,同步方法)

代码演示:

public class SingletonTest04 {
    public static void main(String[] args) {
        System.out.println("懒汉式 2 , 线程安全~");
        Singleton instance = Singleton.getInstance();
        Singleton instance2 = Singleton.getInstance();
        System.out.println(instance == instance2); // true
        System.out.println("instance.hashCode=" + instance.hashCode());
        System.out.println("instance2.hashCode=" + instance2.hashCode());
    }
}

// 懒汉式(线程安全,同步方法) 
class Singleton {
    private static Singleton instance;
  
    private Singleton() {
    }
  
    //提供一个静态的公有方法,加入同步处理的代码,解决线程安全问题
    //即懒汉式
    public static synchronized Singleton getInstance() {
        if (instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}

优缺点说明:

  1. 解决了线程安全问题
  2. 效率太低了,每个线程在想获得类的实例时候,执行 getInstance()方法都要进行同步。而其实这个方法只执行一次实例化代码就够了,后面的想获得该类实例,直接 return 就行了。方法进行同步效率太低
  3. 结论:在实际开发中,不推荐使用这种方式

7. 懒汉式(线程安全,同步代码块)

代码演示:

class Singleton{
	//1. 私有化构造方法
	private Singleton() {}

	//声明本类静态共享的引用类型变量,但不创建对象
	private static Singleton instance;

	//提供一个公共静态的方法,加入同步代码块处理。
	//注意: 这里的同步代码块处理根本解决不了线程安全问题。如果把if语句一起放到
	//同步代码块里面,解决了线程安全问题,但是效率问题依然没有解决。
	//即懒汉式
	public static Singleton getInstance(){
		if (instance == null) { //先判断
			synchronized (Singleton.class) {
				instance = new Singleton();
			}
		}
		return instance;
	}
}

public class SingletonTest05 {
	public static void main(String[] args) {
		//测试
		System.out.println("懒汉式3,线程安全!!");
		Singleton instance = Singleton.getInstance();
		Singleton instance2 = Singleton.getInstance();
		System.out.println(instance == instance2); //true  说明是同一个对象。
		//哈希码值相同,也说明是同一个对象
		System.out.println("instance.hashCode()="+instance.hashCode());
		System.out.println("instance2.hashCode()="+instance2.hashCode());
	}
}

优缺点说明:

  1. 这种方式,本意是想对第四种实现方式的改进,因为前面同步方法效率太低, 改为同步产生实例化的代码块。
  2. 但是这种同步并不能起到线程同步的作用。跟第三种同步函数实现方式遇到的情形一致,假如一个线程进入了if (singleton == null)判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例。
  3. 结论:在实际开发中,不能使用这种方式

8. 双重检查

代码演示:

public class SingletonTest06 {
    public static void main(String[] args) {
        System.out.println("双重检查");
        Singleton instance = Singleton.getInstance();
        Singleton instance2 = Singleton.getInstance();
        System.out.println(instance == instance2); // true
        System.out.println("instance.hashCode=" + instance.hashCode());
        System.out.println("instance2.hashCode=" + instance2.hashCode());
    }
}

// 懒汉式(线程安全,同步方法)
class Singleton {
    private static volatile Singleton instance;

    private Singleton() {
    }

    //提供一个静态的公有方法,加入双重检查代码,解决线程安全问题, 同时解决懒加载问题
    //同时保证了效率, 推荐使用
    public static synchronized Singleton getInstance() {
        if (instance == null) {
            synchronized (Singleton.class) {
                if (instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}

优缺点说明:

  1. Double-Check 概念是多线程开发中常使用到的,如代码中所示,我们进行了两次 if (singleton == null)检查,这样就可以保证线程安全了。
  2. 这样,实例化代码只用执行一次,后面再次访问时,判断 if (singleton == null),直接 return 实例化对象,也避免的反复进行方法同步.
  3. 线程安全;延迟加载;效率较高
  4. 结论:在实际开发中,推荐使用这种单例设计模式

9. 静态内部类

代码演示:

public class SingletonTest07 {
    public static void main(String[] args) {
        System.out.println("使用静态内部类完成单例模式");
        Singleton instance = Singleton.getInstance();
        Singleton instance2 = Singleton.getInstance();
        System.out.println(instance == instance2); // true System.out.println("instance.hashCode=" + instance.hashCode()); System.out.println("instance2.hashCode=" + instance2.hashCode());
    }
}

// 静态内部类完成, 推荐使用
class Singleton {
    private static volatile Singleton instance;

    //构造器私有化private Singleton() {}
    //写一个静态内部类,该类中有一个静态属性 Singleton
    private static class SingletonInstance {
        private static final Singleton INSTANCE = new Singleton();
    }

    //提供一个静态的公有方法,直接返回 SingletonInstance.INSTANCE
    public static synchronized Singleton getInstance() {
        return SingletonInstance.INSTANCE;
    }
}

优缺点说明:

  1. 这种方式采用了类装载的机制来保证初始化实例时只有一个线程。
  2. 静态内部类方式在 Singleton 类被装载时并不会立即实例化,而是在需要实例化时,调用 getInstance 方法,才会装载 SingletonInstance 类,从而完成 Singleton 的实例化。
  3. 类的静态属性只会在第一次加载类的时候初始化,所以在这里,JVM 帮助我们保证了线程的安全性,在类进行初始化时,别的线程是无法进入的。
  4. 优点:避免了线程不安全,利用静态内部类特点实现延迟加载,效率高
  5. 结论:推荐使用.

10. 枚举

代码演示:

public class SingletonTest08 {
    public static void main(String[] args) {
        Singleton instance = Singleton.INSTANCE;
        Singleton instance2 = Singleton.INSTANCE;
        System.out.println(instance == instance2);
        System.out.println(instance.hashCode());
        System.out.println(instance2.hashCode());
        instance.sayOK();
    }
}

//使用枚举,可以实现单例, 推荐
enum Singleton {
    INSTANCE; //属性
    public void sayOK() {
        System.out.println("ok~");
    }
}

优缺点说明:

  1. 这借助 JDK1.5 中添加的枚举来实现单例模式。不仅能避免多线程同步问题,而且还能防止反序列化重新创建新的对象。
  2. 这种方式是 Effective Java 作者 Josh Bloch 提倡的方式
  3. 结论:推荐使用

11. 单例模式注意事项和细节说明

  1. 单例模式保证了 系统内存中该类只存在一个对象,节省了系统资源,对于一些需要频繁创建销毁的对象,使用单例模式可以提高系统性能
  2. 当想实例化一个单例类的时候,必须要记住使用相应的获取对象的方法,而不是使用 new
  3. 单例模式使用的场景:需要频繁的进行创建和销毁的对象、创建对象时耗时过多或耗费资源过多(即:重量级对象),但又经常用到的对象、工具类对象、频繁访问数据库或文件的对象(比如数据源、session 工厂等)
消息盒子

# 暂无消息 #

只显示最新10条未读和已读信息